Generic behavior of the hydrodynamic function of charged colloidal suspensions.
نویسندگان
چکیده
We discuss the generic behavior of the hydrodynamic function H(q) and diffusion function D(q) characterizing the short-time diffusion in suspensions of charge-stabilized colloidal spheres, by covering the whole fluid regime. Special focus is given to the behavior of these functions at the freezing transition specified by the Hansen-Verlet freezing rule. Results are presented in dependence on scattering wavenumber q, effective particle charge, volume fraction, salt concentration, and particle size, by considering both the low-charge and high-charge branch solutions of static structure factors. The existence of two charge branches leads to the prediction of a re-entrant melting-freezing-melting transition for increasing particle concentration at very low salinity. A universal limiting contour line is derived for the principal peak height value of H(q), independent of particle charge and diameter, and concentration and salinity, which separates the fluid from the fluid-solid coexistence region. This line is only weakly dependent on the value of the structure factor peak height entering the Hansen-Verlet rule. A dynamic freezing criterion is derived in terms of the short-time cage diffusion coefficient, a quantity easily measurable in a scattering experiment. The higher-dimensional parameter scans underlying this study make use of the fast and highly efficient deltagamma-scheme in conjunction with the analytic rescaled mean spherical approximation input for the static structure factor. Our results constitute a comprehensive database useful to researchers performing dynamic scattering experiments on charge-stabilized dispersions.
منابع مشابه
Many-body hydrodynamic interactions in charge-stabilized suspensions.
In this joint experimental-theoretical work we study hydrodynamic interaction effects in dense suspensions of charged colloidal spheres. Using x-ray photon correlation spectroscopy we have determined the hydrodynamic function H(q), for a varying range of electrosteric repulsion. We show that H(q) can be quantitatively described by means of a novel Stokesian dynamics simulation method for charge...
متن کاملEffective screening of hydrodynamic interactions in charged colloidal suspensions.
We investigate the hydrodynamic interaction in suspensions of charged colloidal silica spheres. The volume fraction as well as the range of the electrostatic repulsion between the spheres is varied. Using a combination of dynamic x-ray scattering, cross-correlated dynamic light scattering, and small angle x-ray scattering, the hydrodynamic function H(q) is determined experimentally. The effecti...
متن کاملINTERACTIONS IN COLLOIDAL SUSPENSIONS Electrostatics, Hydrodynamics and their Interplay
These lecture notes address some recent advances in our understanding of macroionic interactions inspired in part by the evolution of new techniques for studying macroions’ dynamics. Introduction Charged colloidal particles suspended in water interact through hard core repulsions, van der Waals attractions, Coulomb interactions, and hydrodynamic coupling. The particles’ influence on the surroun...
متن کاملInfluence of hydrodynamic interactions on lane formation in oppositely charged driven colloids.
The influence of hydrodynamic interactions on lane formation of oppositely charged driven colloidal suspensions is investigated using Brownian dynamics computer simulations performed on the Rotne-Prager level of the mobility tensor. Two cases are considered, namely sedimentation and electrophoresis. In the latter case the Oseen contribution to the mobility tensor is screened due to the opposite...
متن کاملMicro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow.
In this study, we characterized and modeled the rheology of TEMPO-oxidized cellulose nanofibril (NFC) aqueous suspensions with electrostatically stabilized and unflocculated nanofibrous structures. These colloidal suspensions of slender and wavy nanofibers exhibited a yield stress and a shear thinning behavior at low and high shear rates, respectively. Both the shear yield stress and the consis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 132 5 شماره
صفحات -
تاریخ انتشار 2010